## Constant Multiple Rule

$$
\frac{d}{d x}[c f(x)]=c f^{\prime}(x)
$$

## Chain Rule

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

## The Product Rule

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

$$
\frac{d}{d x}(x)=1
$$

$y$

## $$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$ <br> Power Rule


 TERMINOLOGY


What is a derivative?
The rate of change for some function. Like in a line- the derivative is the slope - like rise over run!

DERIVATIVES TO REMEMBER

$\qquad$
$\cos (x)=\quad-\sin (x)$
$\sin (x)=$
$\cos (x)$
APPLICATION

$$
y=\ln (x)
$$

Find the derivative of the function
${ }^{* *} y=\ln (x)$ can also be written as $f(x)=\ln (x)$ because $f(x)$ simply means function of $x$, which is what $y$ represents**

Our function $=\ln (x)$
Then, using our rule that $\ln (x)^{\prime}=\frac{1}{x}$
we can say that our solution to the derivative of the function is $\square$

