CALC 1 TIPS

RULES

Chain Rule

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

Constant Multiple Rule

$$\frac{d}{dx}[cf(x)] = cf'(x)$$

The Product Rule

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

Power Rule

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(x) = 1$$

TERMINOLOGY

Expressions for *derivative of x*

What is a derivative?

The rate of change for some function. Like in a line- the derivative is the slope - like rise over run!

DERIVATIVES TO REMEMBER

$$In(x)' = \frac{1}{x}$$

$$x' = 1$$

$$c' = 0$$

$$cos(x) = -sin(x)$$

$$sin(x) = cos(x)$$

<-. ** where **c** is some constant**

31

APPLICATION

$$y = ln(x)$$

Find the derivative of the function

** y = ln(x) can also be written as f(x) = ln(x) because f(x) simply means function of x, which is what y represents**

Our function = ln(x)

Then, using our rule that ln(x)' = 1

we can say that our solution to the derivative of the function is